
MATH 53H - Solutions to Problem Set V

1. For each of the three systems, the origin is the only equilibrium point.

1. The associated linearized system is x′ = x, y′ = −2y and hence the
origin is a saddle. By solving for y first and then for x we obtain that

x(t) = (x0 +
y0

2

5
)et − y0

2

5
e−4t, y(t) = y0e

−2t

where we denote the initial condition by (x0, y0). We get in particular that

x(t) + y(t)2

5 = (x0 + y02

5 )et and by the parametrization of y, it is clear that

the parabola x = −y2

5 is the stable curve for the system.

By performing the change of variables u = x+ y2

5 , v = y or just looking at
the phase portrait, we can see that the linearized system describes accurately
the behaviour near the origin.

2. The associated linearized system is x′ = 0, y′ = 0, which admits
only constant solutions, and hence the origin is not a hyperbolic equilibrium
point and there is no stable curve.
By looking at the phase portrait, we clearly see that the linearized system
does not describe accurately the behaviour near the origin.
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3. The associated linearized system is x′ = 0, y′ = 0, which admits
only constant solutions, and hence the origin is not a hyperbolic equilibrium
point and there is no stable curve.
By looking at the phase portrait, we clearly see that the linearized system
does not describe accurately the behaviour near the origin. In order to draw
the phase portrait or solve the system explicitly, it might be helpful to notice
that in polar coordinates the system can be written as r′ = r3, θ′ = 0.
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2. Our vector field is F (x, y) = (y − x5,−x− y3). Hence we have

〈∇L,F 〉 = 2x(y − x5) + 2y(−x− y3) = −2x6 − 2y4 ≤ 0

with equality only at the origin. It is immediate from Lyapunov’s theorems
that the origin is asymptotically stable.

3. (i) This is algebraic manipulation using the formulas x = r cos θ and
y = r sin θ.

(ii) In polar coordinates we need to show equivalently that r(t) → 1 and
θ(t)→ 2nπ as t→∞ for some integer n.
We can solve the first equation for r(t) by using separation of variables to

obtain r(t)
|r(t)−1| = r(0)

|r(0)−1|e
t, which implies that r(t)→ 1 as t→∞ assuming

r(0) 6= 0.
If R(t) is an anti-derivative for r(t), then we can use separation of variables
again together with the double-angle formula 1− cos θ = 2 sin2( θ2) to obtain
θ(t) = 2 cot(R(t) +C) for some constant C. It is clear that since r(t)→∞,
R(t)→∞ as t→∞, which implies that θ(t)→ 2nπ as desired.

(iii) Note that if the initial condition is (r0, θ0), where for example we can
take r0 < 1, θ0 > 0 both close to 1 and 0 respectively, then since both
r(t), θ(t) are increasing by the equations of our system, we will have

θ′(t) = r(t)(1− cos θ(t)) ≥ r0(1− cos θ0) > 0

as long as θ(t) is say less than π
2 . This clearly implies that for some time t0

we will have θ(t0) = π
2 and hence the solution will move “far” from (1, 0).

Therefore (1, 0) is not a stable equilibrium point.

4. You can find an argument along the lines of the hint in the textbook
of the course (Brendle, Theorem 3.6, Lemmas 3.7-3.9, pages 32-35).
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